Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 780
Filtrar
1.
Cell Mol Life Sci ; 81(1): 189, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643448

RESUMO

Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-ß1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-ß signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-ß1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-ß signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/genética , Fator de Crescimento Transformador beta1 , Glicólise , Neoplasias Colorretais/genética , Células-Tronco , Microambiente Tumoral , Proteína Smad3/genética , Proteína 4 Semelhante a Angiopoietina/genética
2.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562611

RESUMO

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Lipossomos/química , Receptores LHRH , Integrina alfaVbeta3 , Linhagem Celular Tumoral , Camundongos Nus , Paclitaxel/uso terapêutico , Oligopeptídeos/química
3.
Nat Chem ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570729

RESUMO

Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.

4.
J Bioenerg Biomembr ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613636

RESUMO

Acute myocardial infarction (AMI) is one of the most prevalent cardiovascular diseases, accounting for a high incidence rate and high mortality worldwide. Hypoxia/reoxygenation (H/R)-induced myocardial cell injury is the main cause of AMI. Several studies have shown that circular RNA contributes significantly to the pathogenesis of AMI. Here, we established an AMI mouse model to investigate the effect of circDiaph3 in cardiac function and explore the functional role of circDiaph3 in H/R-induced cardiomyocyte injury and its molecular mechanism. Bioinformatics tool and RT-qPCR techniques were applied to detect circDiaph3 expression in human patient samples, heart tissues of AMI mice, and H/R-induced H9C2 cells. CCK-8 was used to examine cell viability, while annexin-V/PI staining was used to assess cell apoptosis. Myocardial reactive oxygen species (ROS) levels were detected by immunofluorescence. Western blot was used to detect the protein expression of anti-apoptotic Bcl-2 while pro-apoptotic Bax and cleaved-Caspase-3. Furthermore, ELISA was used to detect inflammatory cytokines production. While bioinformatics tool and RNA pull-down assay were used to verify the interaction between circDiaph3 and miR-338-3p. We found that circDiaph3 expression was high in AMI patients and mice, as well as in H/R-treated H9C2 cells. CircDiaph3 silencing ameliorated apoptosis and inflammatory response of cardiomyocytes in vivo. Moreover, the knockdown of cirDiaph3 mitigated H/R-induced apoptosis and the release of inflammatory mediators like IL-1ß, IL-6, and TNF-α in H9C2 cells. Mechanistically, circDiaph3 induced cell apoptosis and inflammatory responses in H/R-treated H9C2 cells by sponging miR-338-3p. Overexpressing miR-338-3p in H/R-treated cells prominently reversed circDiaph3-induced effects. Notably, miR-338-3p inhibited SRSF1 expression in H/R-treated H9C2 cells. While overexpressing SRSF1 abrogated miR-338-3p-mediated alleviation of apoptosis and inflammation after H/R treatment. To summarize, circDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through the miR-338-3p/SRSF1 axis. These findings suggest that the circDiaph3/miR-338-3pp/SRSF1 axis could be a potential therapeutic target for treating H/R-induced myocardial injury.

5.
Mycopathologia ; 189(2): 30, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578519

RESUMO

OBJECTIVE: To study the distribution of pathogenic Aspergillus strains of otomycosis in central China and the identification of their antifungal sensitivity. METHODS: We collected external ear canal secretions clinically diagnosed as otomycosis from April 2020 to January 2023 from the Department of Otolaryngology-Head and Neck Surgery in central China. The pathogenic Aspergillus strains were identified through morphological examination and sequencing. The antifungal sensitivity was performed using the broth microdilution method described in the Clinical Laboratory Standard Institute document M38-A3. RESULTS: In the 452 clinical strains isolated from the external ear canal, 284 were identified as Aspergillus terreus (62.83%), 92 as Aspergillus flavus (20.35%), 55 as Aspergillus niger (12.17%). In antifungal susceptibility tests the MIC of Aspergillus strains to bifonazole and clotrimazole was high,all the MIC90 is > 16 ug/mL. However, most Aspergillus isolates show moderate greatly against terbinafine, itraconazole and voriconazole. CONCLUSION: A. terreus is the most common pathogenic Aspergillus strain in otomycosis in central China. The selected topical antifungal drugs were bifonazole and clotrimazole; the drug resistance rate was approximately 30%. If the infection is persistent and requires systemic treatment, terbinafine and itraconazole can be used. The resistance of Aspergillus in otomycosis to voriconazole should be screened to avoid the systemic spread of infection in immunocompromised people and poor compliance with treatment. However, the pan-azole-resistant strain of Aspergillus should be monitored, particularly in high-risk patients with otomycosis.


Assuntos
Aspergilose , Otomicose , Humanos , Antifúngicos/farmacologia , Otomicose/epidemiologia , Otomicose/microbiologia , Itraconazol , Voriconazol , Terbinafina , Clotrimazol/farmacologia , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergillus , Testes de Sensibilidade Microbiana
6.
Huan Jing Ke Xue ; 45(3): 1561-1576, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471870

RESUMO

At the time when water resources are in short supply,wastewater recycling is both an important environmental protection strategy and also a resource strategy. Disinfection is essential to ensure the biological safety of reclaimed wastewater by killing pathogens and preventing the spread of waterborne diseases. However,the disinfection process could inevitably produce toxic disinfection byproducts(DBPs)due to the reaction between the disinfectants and wastewater organic matters. Regarding wastewater DBPs,this study reviewed their identification methods,formation conditions(including precursors,the effect of water quality,disinfectants,and operational parameters on DBPs),and control methods(including source control,process control,and end control). In addition,future research trends of wastewater DBPs were discussed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Águas Residuárias , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Halogenação
8.
J Clin Gastroenterol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38457410

RESUMO

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

10.
Environ Pollut ; 348: 123800, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518970

RESUMO

The overuse and misuse of antibiotics have resulted in the pollution of antibiotics and antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (WWTPs), posing threats to ecological security and human health. Thus, a comprehensive investigation was conducted to assess the occurrence, removal efficiency, and ecological risk of antibiotics, along with the diversity, abundance, and co-occurrence of ARGs, and their correlations in 13 WWTPs along the Yangtze River Basin. Among 35 target antibiotics, 23 antibiotics within 6 categories were detected in all the samples. Amoxicillin (AMO), ofloxacin (OFL), and pefloxacin (PEF) were predominant in influents, while AMO exhibited dominance with the highest concentration of 1409 ng/L in effluents. Although antibiotic removal performance varied among different WWTPs, a significant decrease in each antibiotic category and overall antibiotics was observed in effluents compared with that in influents (p < 0.05). Remarkably, ecological risk assessment revealed high risks associated with AMO and ciprofloxacin (CIP) and medium risks linked to several antibiotics, notably including OFL, roxithromycin (ROX), clarithromycin (CLA), and tetracycline (TC). Furthermore, 96 ARG subtypes within 12 resistance types were detected in this study, and the total absolute abundance and diversity of ARGs were significantly decreased from influents to effluents (p < 0.05). Enrichment of 38 ARGs (e.g., blaNDM, ermA, vatA, mexA, and dfrA25) in effluents indicated potential health risks. Various mobile genetic elements (MGEs), exhibited significant correlations with a majority of ARGs in both influents and effluents, such as intⅠ1, tnpA1, tnpA5, and tp614, underscoring the important role of MGEs in contributing to the ARG dissemination. Many antibiotics displayed lower correlations with corresponding ARGs, but exhibited higher correlations with other ARGs, suggesting complex selective pressures influencing ARG propagation. Overall, the incomplete elimination of antibiotics and ARGs in WWTPs is likely to pose adverse impacts on aquatic ecosystems in the Yangtze River Basin.


Assuntos
Antibacterianos , Purificação da Água , Humanos , Águas Residuárias , Genes Bacterianos , Rios , Ecossistema , Prevalência , Resistência Microbiana a Medicamentos/genética , China
11.
Gen Physiol Biophys ; 43(1): 57-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312035

RESUMO

The most prevalent cause of lung cancer is smoking tobacco, but exposure to second hand smoke, air pollution, and certain chemicals and substances at work can also raise the risk of disease. In this study, we scrutinized the chemoprotective effect of the metformin and atorvastatin combination against benzo[a]pyrene (BaP)-induced lung cancer in mice of Swiss albino. BaP (50 mg/kg) was used for induction of lung cancer and mice were treated with metformin, atorvastatin or their combination. Metformin + atorvastatin combination significantly (p< 0.001) improved the body weight, liver weight, suppressed the lung weight and tumor incidence and altered the levels of immunocompetent cells, polyamines, lung tumor markers, lung parameters and antioxidant parameters, respectively. Metformin + atorvastatin combination also suppressed cytokines levels, inflammatory parameters and caspase parameters. On the basis of the results, we can conclude that metformin + atorvastatin combination remarkably suppressed lung cancer via the inflammatory pathway.


Assuntos
Neoplasias Pulmonares , Metformina , Camundongos , Animais , Metformina/efeitos adversos , Metformina/metabolismo , Atorvastatina/efeitos adversos , Atorvastatina/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Transdução de Sinais , Pulmão/patologia
12.
J Am Chem Soc ; 146(6): 3635-3639, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38318801

RESUMO

A biscyclen molecular cabin, synthesized by connecting two cyclen macrocycles with four linkages, entraps a Li+···H2O···Li+ trimer with a water molecule clamped by two Li+ ions. This configuration results in strongly polarized water, characterized by a water proton resonance shift of up to 10.00 ppm. The arrangement facilitates unprecedented O-centered chalcogen bonds between the lone pairs of pyridinyl nitrogen atoms and polarized water oxygen, as confirmed by X-ray crystallography, NMR spectroscopy, and theoretical calculations. Further observation of O-centered chalcogen bonding in a H2O·(LiCl)2 cluster suggests its widespread presence in hydrated salt systems.

13.
Nat Commun ; 15(1): 1206, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332019

RESUMO

Micro-sized silicon anodes can significantly increase the energy density of lithium-ion batteries with low cost. However, the large silicon volume changes during cycling cause cracks for both organic-inorganic interphases and silicon particles. The liquid electrolytes further penetrate the cracked silicon particles and reform the interphases, resulting in huge electrode swelling and quick capacity decay. Here we resolve these challenges by designing a high-voltage electrolyte that forms silicon-phobic interphases with weak bonding to lithium-silicon alloys. The designed electrolyte enables micro-sized silicon anodes (5 µm, 4.1 mAh cm-2) to achieve a Coulombic efficiency of 99.8% and capacity of 2175 mAh g-1 for >250 cycles and enable 100 mAh LiNi0.8Co0.15Al0.05O2 pouch full cells to deliver a high capacity of 172 mAh g-1 for 120 cycles with Coulombic efficiency of >99.9%. The high-voltage electrolytes that are capable of forming silicon-phobic interphases pave new ways for the commercialization of lithium-ion batteries using micro-sized silicon anodes.

14.
Biomark Res ; 12(1): 29, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419056

RESUMO

Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.

15.
J Environ Sci (China) ; 141: 16-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408817

RESUMO

Azole fungicides (AFs) play an important role in the prevention and treatment of fungal diseases in agricultural crops. However, limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale. To address this gap, we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons. Carbendazim (CBA), tebuconazole (TBA), tricyclazole (TCA), and propiconazole (PPA) were found to be the dominant compounds. Their highest concentrations were measured in January (188.3 ng/L), and November (2197.1 ng/L), July (162.0 ng/L), and November (1801.9 ng/L), respectively. The comparison between wastewater treatment plants (WWTPs) effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River. In particular, TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs, while difenoconazole (DFA) was found to be the most potent pollutant in municipal WWTPs, with an average removal rate of less than 60%. The average risk quotient (RQ) for the entire AFs was 6.45 in the fall, which was higher than in January (0.98), April (0.61), and July (0.40). This indicates that AFs in surface water posed higher environmental risks during the dry season. Additionally, the exposure risk of AFs via drinking water for sensitive populations deserves more attention. This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River, and offers suggestions for better reduction of AFs.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Rios , Azóis , Monitoramento Ambiental , Ciclo Hidrológico , Água , China , Medição de Risco , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 916: 170233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246382

RESUMO

Sludge poses a serious threat to the environmental health. Hot-pressing drying has been proven efficient in sludge treatment because of the reduced thermal contact resistance, rapid increase in sludge temperature, and high drying rate. Sludge extracellular polymeric substances (EPS) significantly influence moisture transfer. However, whether in hot-pressing or traditional thermal drying, the effect of EPS on sludge moisture-holding capacity is rarely reported. Thereby, this study investigated the relationship between hydrophilic/hydrophobic characteristics of EPS and sludge moisture-holding capacity at various drying time and mechanical compression using XAD resin fractionation. Thermodynamic analysis indicated that sludge moisture desorption isotherms, net isosteric heat of desorption, and differential entropy presented a downward trend with the increase in drying time and mechanical compression, suggesting reduced sludge moisture-holding capacity. EPS analysis showed that at the same drying time, applying 25 kPa mechanical compression increased sludge temperature by 16 % and protein content by 13.8 %. At the same sludge temperature, protein content rose by 7.3 % compared to the drying without mechanical compression. It was concluded that the fast rise in sludge temperature and the mechanical extrusion facilitated the destruction of sludge microbial flocs, accelerating the release of intracellular and EPS-bound moisture and contributing to the decrease in moisture-holding capacity. Besides, tryptophan protein-like substances were the major source of hydrophilic/hydrophobic organic matter, compared to polysaccharide and humic acid-like substances. The gradually reduced sludge moisture-holding capacity was divided into three stages. Below 67 °C, the moisture desorption was dominated by the release of intracellular moisture. Below 85 °C, the increase in protein and the enhanced exposure of hydrophobic functional groups in protein improved the hydrophobicity of EPS. Above 85 °C, protein consumption due to thermal decomposition and browning reaction facilitated the desorption of EPS-bound moisture. Hence, this study provided novel insights into the mechanism of sludge drying.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos , Temperatura , Interações Hidrofóbicas e Hidrofílicas , Proteínas/química
17.
RSC Adv ; 14(2): 1488-1500, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174284

RESUMO

In this study, fcSe@TiO2 and [Cu2I2(fcSe)2]n@TiO2 nanosystems based on ferrocenylselenoether and its cuprous cluster were developed and characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and electron paramagnetic resonance (EPR). Under optimized conditions, 0.2 g L-1 catalyst, 20 mM H2O2, and initial pH 7, good synergistic visible light photocatalytic tetracycline degradation and Cr(vi) reduction were achieved, with 92.1% of tetracycline and 64.5% of Cr(vi) removal efficiency within 30 minutes. Mechanistic studies revealed that the reactive species ˙OH, ˙O2-, and h+ were produced in both systems through the mutual promotion of Fenton reactions and photogenerated charge separation. The [Cu2I2(fcSe)2]n@TiO2 system additionally produced 1O2 from Cu+ and ˙O2-. The advantages of the developed nanosystems include an acidic surface microenvironment provided by Se⋯H+, resourceful product formation, tolerance of complex environments, and excellent adaptability in refractory N-cyclic organics.

19.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189651

RESUMO

Power transmission is an important application for magnetorheological (MR) fluid, and the cylinder-type power transmission device is a novel transmission form due to its high stability, higher transmission torque, and large ratio of power to mass. This work designed a novel multi-cylinder transmission device with a water-cooling channel because the MR transmission device, especially high-power MR transmission device, inevitably works in the high-temperature environment. Based on Ohm's law and electromagnetism theory, the magnetic circuit in the novel MR transmission device is designed, and the magnetoresistance was calculated. The finite element method is used to analyze the magnetic field in the device to ensure that the magnetic field in the working gap of MR fluid is strong enough for the MR effects. The temperature of the MR fluid inside the device is analyzed by the finite element method in the natural cooling state and the water-cooling state, respectively, so as to obtain the performance of water cooling. The novel MR transmission device is manufactured to verify its power transmission capability and heat-dissipation performance. The experimental results show that the novel device can transmit a maximum torque of 70 N m, consistent with the rated torque. In addition, compared with natural cooling, the water cooling makes the temperature of the MR fluid to drop by 32.7% under the same working condition. This is the first time that the cooling channel is set up in the cylinder-type MR transmission device, which will provide a solution for the higher power transmission capacity by MR fluid.

20.
Microbiol Spectr ; 12(1): e0297923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047694

RESUMO

IMPORTANCE: We present a protocol to efficiently sequence genomes of the MPXV-causing mpox. This enables researchers and public health agencies to acquire high-quality genomic data using a rapid and cost-effective approach. Genomic data can be used to conduct surveillance and investigate mpox outbreaks. We present 91 mpox genomes that show the diversity of the 2022 mpox outbreak in Ontario, Canada.


Assuntos
Vírus da Varíola dos Macacos , Humanos , Vírus da Varíola dos Macacos/genética , Sequenciamento Completo do Genoma , Genômica , Surtos de Doenças , Ontário/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...